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Figure 17. Image comparison of (a) target images from the redatumed data using the focusing functions (eqs 17 and 21) and (b) surface image from original
surface reflection data. The dashed box highlights the target area. The arrow indicates an example of the artefacts from internal multiples. A true velocity
model is used for migration.

4 D I S C U S S I O N

As demonstrated in the numerical examples, the redatuming
schemes remove part of the internal multiples. The multiples from
the target zone still remain, since only the multiples from the oppo-
site side of the target zone are removed. This results in an improve-
ment in the images produced as seen in the numerical examples,
especially when the velocity model is wrong. Because internal mul-
tiples tend to stack out destructively when a good velocity model is
available, and when the velocities are wrong, the primaries interfere

less constructively and the imprint from the internal multiples be-
comes more pronounced. For this reason, our redatuming schemes
prior to the imaging step can be particularly beneficial for areas
with strong multiples and velocity uncertainties.

A wide enough acquisition aperture in the input data is important,
because all stationary phase positions for the target zone need to be
covered. In our test, since only a 20 Hz Ricker wavelet is used for
modelling the borehole data, the resolution of the images is limited
and could be improved if higher frequencies are used. For the surface
data, in order to find the correct focusing function, we model the
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Figure 18. Image comparison of (a) target images from the redatumed results and (b) surface image from original surface reflection data. The dashed box
highlights the target area. The arrow indicates an example of the artefacts from internal multiples, which become more pronounced given the wrong velocity
model. These artefacts are absent in the target image in panel (a). A simple 1-D linear velocity model is used for migration.

reflection response to an input spike, but for data acquired in the
field, they correspond to the Green’s function convolved with the
source signature. Therefore, a good source signal estimation is
required in practice in order to take full advantage of the schemes
presented. The proposed alternative schemes do not have this re-
quirement and are often still sufficient solutions for imaging local
geological structures in the presence of velocity errors in the model,
as shown in the experiments.

The schemes as presented assume that the borehole is at a con-
stant depth, but the method can be immediately adapted to include

non-horizontal boreholes by extrapolating the direct arrivals in the
borehole data to a constant depth using the forward Kirchhoff–
Helmholtz integral (Wapenaar 1993). The extension to retrieve
the reflection response defined locally according to the borehole
orientation, however, still needs to be investigated. The surface re-
lated multiples are not considered in the schemes, but Singh et al.
(2015) show how to take them in account in the Marchenko method,
so this can also be done here. Another suggestion for future study
is the possibility of using more than the direct arrivals in the bore-
hole data for finding the focusing functions, and this is currently
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being investigated. It is also observed that images from the surface
and from the borehole (when imaging from below) inherit a differ-
ent sensitivity to errors in the velocity model. Similar observations
have also been made by Ravasi et al. (2015a) and might be used for
updating the velocity model.

5 C O N C LU S I O N S

We present a novel application of SI and Marchenko imaging, us-
ing both surface and borehole seismic data. A series of redatuming
schemes that require only single-component data are presented to
create virtual data sets with both sources and receivers in the bore-
hole. These virtual data sets are ideal for deep target imaging near
the borehole, because the medium properties in the shallower part
become irrelevant when imaging using these data sets and the vir-
tual sources and receivers are close to the target area. Furthermore,
cleaner and more accurate images are obtained because the inter-
fering internal multiples from the overburden and underburden are
removed in the redatuming schemes. Finally, the numerical experi-
ments also show that these images are more robust to velocity errors
in the model than conventional surface images. Good deep target
images are obtained with simple velocity input after applying these
redatuming schemes.
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